
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

1

Blockchain-based Edge Computing Resource Allocation in IoT: A Deep Reinforcement
Learning Approach

Ying He, Yuhang Wang, Chao Qiu, Qiuzhen Lin, Jianqiang Li, Zhong Ming

Abstract—With the exponentially growth in the number of
Internet of Things (IoT) devices, the cloud-centric computing
paradigm can hardly meet the increasingly high requirements for
low-latency, high-bandwidth, easily available and more intelligent
services. Therefore, a distributed and decentralized computing
architecture is imperative, where edge-centric computing, such
as fog computing and mist computing, is recently proposed.
Edge-centric computing resources can be managed locally and
personally rather than being administered by a remote cen-
tralized third-party. However, security and privacy issues are
the main challenges due to the absence of trust between the
IoT devices and edge computing nodes. A blockchain, as a
decentralized, trustless and immutable public ledger, can well
solve the trust-absence issue. In this paper, we first elaborate on
the security and privacy issues of edge computing-enabled IoT,
and then present the key characteristics of blockchains, which
make blockchains well-suited for the edge-centric IoT scenarios.
Furthermore, we propose a general framework for blockchain-
based edge computing-enable IoT scenarios that specifies the
step-by-step procedure of a single transaction between an IoT
end and an edge computing node. In addition, we design a
smart contract within a private blockchain network that exploits
the-state-of-the-art machine learning algorithm, Asynchronous
Advantage Actor-Critic (A3C), to allocate the edge computing
resources, which exemplifies how artificial intelligence (AI) can
be combined with blockchains. We further discuss the benefits
of the convergence of AI and blockchains. Finally, simulation
results are presented.

Index Terms—Blockchain, Internet of Things, Edge-centric
Computing, A3C algorithm.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT), a
growing number of physical devices are being connected at an
unprecedented rate [1]. The connectivity of these IoT devices
will definitely generate a large amount of data into networks,
which requires massive computing resources, storage space
and communication bandwidth for data analytics. Big data
and data analytics play a significant role in the advancement
of IoT [2], which is usually implemented by the support of
cloud computing. Unfortunately, despite the “unlimited” com-
putational capacities, the cloud-centric computing paradigm
exposes some issues, like high transmission cost, transmission

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This research was supported by the National Natural Science Foundation
of China (NSFC) under Grant 62002238, 61836005 and 61976142.

Ying He, Yuhang Wang, Qiuzhen Lin, Jianqiang Li, and Zhong Ming
are with College of Computer Science and Software Engineering, Shenzhen
University, P.R. China

Chao Qiu is with College of Intelligence and Computing, School of
Computer Science and Techlogy, Tianjin University, P.R. China.

congestions, and long service latency, which makes cloud
computing infeasible in many IoT application scenarios that
require real-time interactions or mobility [3], [4].

On the other hand, cloud-centric computing, as a type of
centralized computing architecture, also exhibits some down-
sides [5]–[7]. The first primary issue is the loss of privacy,
for instance, some sensitive IoT data, such as surveillance
videos, locations, healthcare data, meter readings, etc., are
released directly to cloud-based centralized services, such as
storage services, location services, healthcare websites, etc.
The second primary problem is the complete delegation of
the applications from the clients to the clouds, which is only
based on an unilateral trust. Thirdly, centralization results in
the missed opportunities of exploiting the enormous amount
of computational resources, storage, and communication capa-
bility of the advanced personal devices. Finally, cloud-centric
computing is vulnerable to single-point-of-failure, and it is not
scalable to deal with the hundreds of billions of data service
requests generated by the exponentially increasing IoT devices
[8].

Therefore, the trend is recently geared towards a decen-
tralized computing paradigm, where edge-centric computing,
such as fog computing and mist computing, is proposed to be
utilized in IoT scenarios [9]–[11]. In edge-centric computing
architecture, the computing resources, various applications and
services are transferred from the centralized nodes to the
periphery of the networks that is much closer to the end IoT
devices, henceforth, low-latency, fast-response and location-
awareness services can be provided [12]–[14]. Furthermore, in
this novel decentralized paradigm, the edge computing devices
can be administered locally rather than being controlled by a
third-party centralized cloud node [8], henceforth, various in-
novative, customized or availability-oriented applications and
services can be more conveniently realized. Since IoT appli-
cations might require fast-response, low-latency and privacy-
preserving services, thus edge-centric computing is preferably
well-suited for handling with IoT data. It might be noted that
personal advanced IoT devices can also play the roles of edge
computing nodes, and share their resources as a service with
other IoT devices.

However, security and privacy are two primary challenges
for IoT nodes when making transactions with edge comput-
ing nodes due to the lack of trust relationships. The most
recent advanced technology, blockchains, as a trustless and
immutable public ledger can be an appropriate solution to
tackle this trust-absence problem. The distributed consensus
mechanism and the key management system in blockchains
help facilitate the sharing of resources and services, and

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

2

make the transactions being processed in a cryptographically
verifiable manner. Essentially, the transactions are secured
because they are trackable and irreversible.

Blockchain technology has been developing rapidly in the
recent years, especially in IoT scenarios [15]–[17]. One well-
known blockchain app platform, Ethereum, implements a
nearly Turing-complete language on its blockchain, which
means any program codes designed by clients are allowed to
be executed on blockchains in an automatic and autonomous
manner. The autonomy is achieved by smart contract enabled
by blockchains. Contract clauses embedded in smart contracts
will be executed automatically when a certain condition is
satisfied. Started originally as an Ethereum fork, Monax In-
dustry provides a customizable “Blockchain as a service”,
allowing clients to define arbitrary rules for their own protocol
by writing smart contracts that will be executed on a private
blockchain network [18].

In this paper, the main contributions include
• We first elaborate on the security and privacy issues

of edge computing-enabled IoT, and then present the
key characteristics of blockchains that allow blockchains
well-suited for the edge-centric IoT scenarios.

• A general framework for blockchain-based edge
computing-enabled IoT scenarios is proposed, where the
procedure of a single transaction is specified step by
step from the beginning of issuing a data service request
by an IoT node to how finally the service is completed
and recorded on the blockchains.

• We design a smart contract within a private blockchain
network, which exploits the-state-of-the-art machine
learning algorithm, A3C, to solve the edge computing
resources allocation problem. Particularly, different from
the existing relevant schemes, this proposed scheme can
distinguish different quality of service (QoS) require-
ments from multiple service subscribers, which leads
to higher efficiency. This exemplifies how AI can be
combined with blockchains, and later we further discuss
the benefits of the convergence of AI and blockchains.

• Simulation results are finally presented to show the ef-
fectiveness of utilizing A3C algorithm to solve the edge
computing resource allocation problem.

The rest of this paper is organized as follows. In Section
II, the background is presented where security and privacy
issues of edge computing-enabled IoT are mainly discussed.
Section III illustrate the proposed framework and the system
model. In Section IV, how the smart contract is designed
to allocate the edge computing resources is formulated as a
deep reinforcement learning problem. Section V presents the
solution with A3C algorithm. Simulation results are discussed
in Section VI. Finally, conclusions and future works are
presented in Section VII.

II. THE PROPOSED FRAMEWORK AND SYSTEM MODEL

In this section, the system architecture is first described.
A framework of blockchain-based edge computing in IoT

Fig. 1. Overview of the system architecture.

environment is presented in the second part. Finally, the system
model is discussed.

A. System Architecture

In this paper, the system architecture is presented in Fig. 1,
which consists of four layers: the IoT device layer, the sub-
scriber layer, the edge computing layer and the cloud layer. In
the bottom layer, the IoT devices, such as various smartphones,
smart cars, sensors, laptops, smart homes, etc., monitor and
gather raw data from the surrounding environments. In the
subscriber layer, each data service subscriber (DSS) possesses
and controls several IoT devices, and sends the filtered raw
data to the edge computing layer for computing so as to do
data analysis or pre-processing in a timely manner. If required,
the output data after being processed by the edge computing
can be sent back to DSSs or delivered to the cloud for further
data analysis or long-term storage. Here, we consider that the
DSSs apply real-time interactive applications, i.e., the data
analysis results should be returned to the DSSs timely. For
the edge computing layer, there exists a set of edge computing
nodes (ECNs), each of which is formed by multiple low-power
computing resources and can provide data computing services.
Specifically, the ECNs can be enacted by any IoT devices with
surplus computing resources. For any distributed computing
system, scheduling plays an important role due to the fact that
the performance of the applications depends primarily on its
efficiency [19]. Therefore, when a DSS submits a data service
request, a most appropriate ECN should be assigned to offer
the computing service for the DSS based on the current system
state (e.g., each ECN’s running workload) and the DSS’s QoS
requirement (e.g., the shortest service delay). Unexpectedly,
if the ECNs have insufficient computing resources to process
the input data, they can offload the incoming data to the cloud
at the cost of the increased latency in the response time and
extra consumption in the network resources.

B. The Framework of Blockchain-based Edge Computing in
IoT Environments

In this part, we present a framework that specifies how the
transactions are handled from the IoT devices to the ECNs via

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

3

blockchain.
We assume a specific kind of crypto token, just like Ether

in the Ethereum, circulating under this framework. The DSSs
who create computing requests pay the crypto tokens, and on
the other hand, ECNs that contribute the computing resources
and bandwidth can earn the tokens in the form of fees from
the DSSs. Any transfer of the crypto token in the system can
be considered to have been confirmed with the same security
as the underlying proof of work or proof of stake blockchain.
Addtionally, consensus in this framework is also provided by
the underlying blockchain platform, for example Ethereum.
Distributing newly minted tokens is an extra manner to en-
courage participation in the computing jobs and verification
jobs. Since we focus on the computing part of this framework
in this paper, the initial allocation of the crypto tokens and
additional tokens issued according to a certain inflation rate
will not be discussed in detail.

The core unit of the IoT streaming data is termed as a
segment, that is to say, the streaming data collected from the
IoT devices is divided into segments. A sequential number is
created for each segment that identifies their proper ordering
[20]. Specifically, hash of the data payload of each segment
should also be created, which can be used to attest the data
integrity. For this framework, the blockchain uses the segments
as the unit of work for computing and payment.

The entire procedure of a specific transaction is depicted in
Fig. 2, where we consider the scenario that DSS K submits
a computing request onto the blockchain. The procedure is
discussed as follows.

1) DSS K creates a computing request onto the blockchain
and deposits some tokens in escrow as well.

2) Upon receiving the request, the smart contract assigns a
specific ECN w to serve for DSS k. The principle of selecting
a node for computing services varies from each scenario. For
example, in [21] the nodes for performing the transcoding jobs
are selected based on delegated proof of stake, i.e., the nodes
with the most cumulative stakes including both their own and
the stakes delegated from other nodes can finally play the
computing role. In this paper, we use the deep reinforcement
learning algorithm to do with the ECN selection.

3) Assume that ECN w is finally assigned. After that ECN
w sends a notice of reception of the computing job, and then
the IoT devices of DSS k can deliver the segments to ECN
w for computing, which contains the signature verifying the
input data from DSS k.

4) Once the computation task is fulfilled, the ECN sends a
claim of completing the computing job to the blockchain, and
meanwhile appends the computing receipt data as a transaction
to the Merkle tree in one block. The computing receipt would
include the hash of the input segment data, the sequential
number of this segment data, the hash of the output data, the
signature of the input data from DSS k, and the signature of
output data from ECN w as well. Afterwards, DSS k invokes
the verification process of its computing work.

5) At the same time, ECN w is required to deliver the
input segment data payload to the storage platform for the

subsequential verification, and makes sure that the data is
stored before the start of the verification process, and it is
maintained long enough for the whole process.

6) The verifier that works based on certain protocol will
extract the data from the storage platform to verify the
correctness of the computing job done by ECN w. Usually,
to alleviate the burden of verification computing, only a small
percentage of the segments are chosed to be challenged. If the
work has been approved to be correct, the verifier will send
a notice of the verification to the smart contract. Accordingly,
ECN w will earn some crypto tokens from DSS k’s account
for completing the computing job. However, if the result is
incorrect, ECN w would get certain punishement and no
earnings, the process repeats once more, and the computing
job will be done by some other ECN.

7) Ultimately, this verifiable transaction will be recorded on
the blockchain.

In the following, we will amplify and specify the second
step in the above procedure, that is to say, how to assign the
edge computing nodes to the requesting users.

C. System Model

Assume that there are totally K DSSs labelled as dk
where k ∈ {1, 2, . . . ,K} and W ECNs given by fw where
w ∈ {1, 2, . . . ,W}. Different DSSs have different criteria for
computing, which can be measured by the service delay time.
For example, some DSSs prefer the minimal service delay
time even if they cost more, whereas other DSSs may require
to minimize the cost even if the computation takes longer. To
satisfy the requirments of the service quality of DSS dk, a
threshold for the service delay time is required and denoted
as τ thk . That is to say, the total delay time for serving one
segment coming from DSS dk, denoted as tk, should meet the
requirement tk ≤ τ thk .

In this paper, we consider that the total delay time for
serving one segment from DSS dk is composed of two
elements, i.e.,

tk = tnetk + tcomp
k , (1)

where the first element tnetk represents the network delay
caused by the wireless transmission from the IoT devices to
the designated ECN and from the ECN back to the DSS dk.
With regard to the second element tcomp

k , which indicates the
sojourn time of one segment spending at the ECN system, i.e.,
the total delay of both the waiting time and the service time.

We will discuss the above two components of the service
delay time in the following, respectively.

1) Network Delay Model: As a usual, DSSs are closely
located with their IoT devices, therefore, without loss of
generality, we assume that IoT devices of each DSS are located
at the same position with the DSS. Mostly the size of the
data needed to be transmitted from ECNs back to DSSs is
small, thus this part of the network delay is omitted, and
we only focus on the network delay caused by delivering the
raw segment from IoT devices to ECNs. In fact, the network
delay is affected by many factors, such as the transmission

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

4

Fig. 2. The procedure of one specific transaction.

distance, the wireless channel conditions, and some other
unpredicted causes. Practically, the network delay can be
evaluated from the training data periodically sent from the IoT
devices to the ECNs [12]. Here, as our previous work [22],
we consider the wireless channels between the ECNs and the
DSSs are realistic time-varying channels, and they are modeled
as finite-state Markov channels(FSMC). The received SNR is
modeled as a random variable γw

k , and the transition follows
a Markov process. For details, please refer to Section III-B
in [22]. Therefore, the network delay tnetk can be expressed
as ok/bk log(1 + γw

k) following Shannon equation, where ok
represents data size for one segment, and bk is the bandwidth.

2) Edge Computing Delay Model: Suppose that the data
segments from the IoT devices of DSS dk arrive according to
a Poisson distribution with the rate of λk, k = 1, 2, . . . ,K.
For the edge computing layer, it is assumed that the computing
capability of each ECN is different, and we suppose that ECN
fw can provide computing service at an average service rate
of µw.

Here, we assume that one data segment from DSS dk is
assigned to be served by ECN fw based on the smart contract.
The edge computing delay for serving the segment can be
divided into two parts: the waiting time in the queue of ECN
fw and the computing time in the server, denoted as Dw

q and
Dw

t , respectively. Therefore, the total edge computing delay
time tcomp

k can be expressed as

tcomp
k = Dw

q +Dw
t . (2)

The average computing time of one data segment in the server
of ECN fw with one CPU can be calculated by one over the
average service rate, namely 1/µw. Then, expression (2) can
be updated as

tcomp
k = Dw

q +
1

µw
. (3)

The queueing delay also involves two parts: the remaining
processing time of the current computing task in the server

and the sum of the computing time of all the segments in the
queue. Then, equation (3) can be written as

tcomp
k = Dw

r +
nw

µw
, (4)

where Dw
r represents the remaining processing time of the

segment being in the server and nw stands for the number
of segments in the queue before the newly arrived segement
from DSS dk, which is actually dynamic over time. Since we
consider the first-come, first-served discipline that means each
ECN computes one segment at a time from the front of the
queue. After the computing service is completed, the result
data will be delivered back to the DSSs or the cloud, and the
number of the segments in this ECN queue reduces by one.

For simplicity, we use the average remaining processing
time to approximate Dw

r , which can be expressed as [23]

Dw
r =

1

2
λ

1

µw
2
, (5)

where λ stands for the average arrival rate of ECN fw.
Therefore, the total delay time of edge computing can be
finalized as

tcomp
k =

1

2
λ

1

µw
2
+

nw

µw
. (6)

Until now, the expression of the total delay of serving one
segment from DSS dk by ECN fw can be shown as follows,

tk =
ok

bk log(1 + γw
k)

+
1

2
λ

1

µw
2
+

nw

µw
≤ τ thk . (7)

Note that the time spent on the blockchain as well as in
the verification process is not included in the total delay time.
Since we consider the real-time interactive edge computing
applications, the computing result should be sent immediately
back to the ECN fw or the cloud for storage once the compu-
tation is completed. In the meantime, the computing result is
delivered to the Storage Platform waiting for verification. Later
on, if the result can successfully pass through the verification
process, ECN fw can earn the tokens previously escrowed on

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

5

the blockchain by the DSS dk, and the transacton is recorded
onto the blockchain. In case the computing result fails the
verfication, the ECN fw cannot gain any tokens, instead, it gets
slashed a certain percentage of its guarantee deposit, and the
DSS dk is refunded. However, the probability of verification
failure is relatively low, this is because for ECNs malicious
behavior will not bring any benefits rather than slashed deposit
and damaged reputation.

III. PROBLEM FORMULATION

In this section, we focus on the problem of how the
smart contract would allocate the computing resources to the
segments, that is to say, when a segment from a DSS newly
arrives, which ECN should the segment join so as to satisfy
the DSS’s requirement and maximize the ECNs’ revenue? Or
should it be blocked or serviced by the remote cloud? We aim
at serving as more segments as possible, and maxmizing the
total revenue of ECNs.

We formulate this problem as a continuous-time Markov de-
cision process. The existing works on continuous-time Markov
decision processes can be categorized into two types: the first
type deals with continuous-time jump Markov decision pro-
cesses wherein the decisions are only performed at certain time
instants, and this can be ascribed into semi-Markov or even
discrete-time Markov decision processes; in the second type
studies, the decision-maker can choose actions continuously in
time [24]. In this paper, we focus on the semi-Markov decision
process (SMDP), under which the decisions are uniformly
referred as actions, and the time instants that an action is
determined are called decision epochs.

A. System State

For the network of W ECNs, the state of the system can
be represented by a W -dimensional vector,

x(t) = [n1(t), n2(t), . . . , nw(t), . . . , nW (t)] ∈ S, (8)

where nw(t) denotes the number of segments presently being
in the queue of the wth ECN at the decision epoch t. S is the
state space. We assume that the buffer size of each ECN is
infinite, i.e., there is no limit on the number of segments in
the queue of each ECN, however, since the computing for the
segments has a delay requirement from the DSSs, thus actually
each queue has an upperbound of the number of segments.

In our scenario, the system state evolves as a birth/death
process that there are two independent exponential clocks
running: for the current state x at decision epoch t, generally
one that will take the system into another state x + ew if a
segment from one DSS newly arrives and visits the wth ECN
for computing; and the other which will evolve the system into
state x−ew if the wth ECN releases the computing resource.
Here, ew is unit W -dimensional vector, which represents an
increase or decrease of the number of segments by 1 in the
corresponding wth ECN, respectively.

B. System Action

When a new segment arrives, the smart contract makes
a scheduling decision. For the SMDP, the natural decision
epochs should be the segments’ arrival points. However, each
time when an ECN completes the computing job, the state of
the system also changes. Therefore, similar to [25], we make
the decision epochs to be the set of all segment arrival and
computing resource release time instants. Let us denote that
t0 = 0, and the decision epochs are taken to be the instances
tm,m = 0, 1, 2, At each decision epoch, the smart contract
makes an action for each DSS’s segment that which ECN
should this request visit. Supposing that at this decision epoch,
only computing resource release happens without any new
arrivals, actually no actions should be performed. We can
define the action a(tm) at decision epoch tm as

a(tm) = [a1(tm),a2(tm), . . . ,aW (tm)], (9)

where the wth element can be extended as

aw(tm) = [aw,1(tm), aw,2(tm), . . . , aw,K(tm)],

∀w ∈ {1, 2, . . . ,W}.
(10)

where aw,j(tm) ∈ {0, 1}, ∀j = 1, 2, . . . ,K, denotes the action
of the wth ECN for a new segment from the jth DSS at
decision epoch tm. If aw,j(tm) = 1, the new segment that
arrives at decision epoch tm is admitted to be serviced at the
wth ECN. Conversely, if aw,j(tm) = 0, it will not be served
by the wth ECN.

Since DSS dj has a total delay requirement τ thj , the sum
time of the network delay and the computing service delay
at the assigned ECN cannot surpass this threshold as we
discussed in Section III-C. For example, for the wth ECN,
the following constraint should be satisfied when a segment
from DSS dj newly arrives,

aw,j(tm) ̸= 1, if
ok

bk log(1 + γw
k)

+
1

2
λ

1

µw
2
+

nw

µw
> τ thj .

(11)

Here, for the system action we restrict that
W∑

w=1
aw,j(tm) ≤

1, that is to say, at one decision epoch, at most one ECN
is allowed to provide computing service to a newly arrived
segment. Provided that all the ECNs cannot satisfy the jth
DSS’s requirement, the actions can only be aw,j(tm) = 0,
∀w = 1, 2, . . . ,W . However, when the system state is x =
[0, 0, . . . , 0], the specific action a(tm) = [0,0, . . . ,0] should
not be the only possible action, otherwise, new segments are
never admitted to visit the ECNs and the system cannot evolve.

Based on the above analysis, the action space Ax of a given
state x is defined as

Ax = {a ∈ A : aw,j(tm) ̸= 1,

if ok
bk log(1+γw

k) +
1
2λ

1
µw

2 + nw

µw
> τ thj ,

W∑
w=1

aw,j(tm) ≤ 1,

and a(tm) ̸= [0,0, . . . ,0] if x = [0, 0, . . . , 0],
∀w ∈ 1, 2, . . . ,W ,
∀j ∈ 1, 2, . . . ,K}.

(12)

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

6

C. State Dynamics

The state dynamics of the system can be characterized
by the state transition probabilities of the embedded Markov
chain. Every continuous-time Markov chain has an associated
embedded Markov chain (also known as a jump process),
which can help find the transition probability. The transition
probability can be written as

pxy(a) ≜ P(x(tk+1) = y|x(tk) = x,a(tk) = a), (13)

which stands for the one-step probability of going from the
current state x at decision epoch tk to the next state y at
decision epoch tk+1 when action a is taken. A transition ma-
trix, formed by all possible pxy, can describe the probabilities
of particular transitions and an initial state across the state
space. However, although the transition matrix determines
the probabilistic behaviour of the embedded Markov chain,
it cannot fully capture the behaviour of the continuous-time
Markov chain because it lacks the specification of the rates at
which the transitions occur.

A transition rate matrix, whose entries qxy,∀x,y ∈ S are
non-negative, describes the rates of the transition process from
one state to another jump state. The entries that represent
the process standing still without any jumps (i.e., elements
qxx,∀x ∈ S) are filled to make each row of the transition
rate matrix sum up to zero. Note that qxy,∀x,y ∈ S are
rates, not probabilities, while they must be nonnegative, they
are not bounded by 1. Based on the transition rate matrix,
the transition probability can be obtained. When the system
enters into a state x, the length of time it spends at state x
is exponentially distributed with rate

∑
x̸=y qxy and when it

leaves state x it will go to state y with probability

pxy =
qxy∑

x̸=y qxy
,x ̸= y. (14)

The above equation indicates that an event of certain transition
occurs with a probability equal to the ratio between the rate
of that particular transition and the total cumulative transition
rate. Therefore, for our formulated problem, the transition
probabilities of the embedded Markov chain are

pxy(a(tm)) =



K∑
j=1

aw,j(tm)λj

W∑
w=1

[
K∑
j=1

aw,j(tm)λj + µw

] , if y = x+ ew

µw

W∑
w=1

[
K∑
j=1

aw,j(tm)λj + µw

] , if y = x− ew

(15)
where ∀w ∈ 1, 2, . . . ,W .

D. Policy and Reward Function

For each given state x ∈ S, an action a ∈ Ax is chosen
according to a policy πx ∈ Π, where Π is a set of admissible

policies defined as

Π = {π : x→ A | πx ∈ Ax,∀x ∈ S} . (16)

In this paper, we consider the average comprehensive rev-
enue (in the form of tokens) of all the ECNs as our system’s
reward. Assume that a segment from DSS dk is assigned to
be served by ECN fw, of which the obtained average income
Rfw will be

Rfw = (1− pwb)Ik − pwb εsFo, (17)

where pwb represents the probability that ECN fw fails in
accomplishing the computation task and cannot pass through
the verification, and it will get punished by slashing a certain
percentage εs of its guarantee deposit Fo. Ik is the amount of
tokens ECN fw can earn in the form of the fee from DSS dk
with a probability of (1− pwb).

On the other hand, to undertake the computation task, ECN
fw has to consume energy, and pays the protocol fees to the
blockchain. Therefore, the cost of ECN fw can be expressed
as

Cfw = ewc
1

µw
Pw
c + Fp, (18)

where the unit price for the energy consumption at ECN fw
is defined as ewc per Joule, the processing time for computing
one segment can be seen as 1/µw (second/segment), and Pw

c

represents the consumed energy in unit time (Joule/second).
Fp is the protocol fee paid to the blockchain, and actually this
amount of tokens is transferred to a virtual machine node that
works as a substitute of the blockchain to execute the complex
smart contract.

Based on the above description, the system reward function
can be shown as

r(tm;x,a) =

K∑
j=1

W∑
w=1

aw,j(tm) [Rfw(tm)− Cfw(tm)]

=
K∑
j=1

W∑
w=1

aw,j(tm)

[
(1− pwb)Ik − pwb εsFo −ewc

1

µw
Pw
c − Fp

]
,

(19)
which is an immediate reward at the decision epoch tm,
namely, ECNs would get R(x,a, tm) tokens in state x when
action a is performed. Since we consider the long-run com-
prehensive revenue of ECNs, we aim at finding an optimal
policy π to maximize the cumulative reward as

Rπ =
T∑

m=0

γmr(tm), (20)

where γ is the discount factor, and T -step future is considered.

IV. SOLUTION WITH A3C ALGORITHM

In this paper, we consider a reinforcement learning-based
approach to derive the optimal policy for the above formulated
SMDP problem. Specifically, we used A3C algorithm [26],
which is a state of the art actor-critic RL algorithm, to train
the learning agents so as to obtain the optimal policy. A3C

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

7

algorithm was recently released by GoogleMind and it has
successfully been utilized to train the neural networks in
many applications [27], [28]. A3C is short for Asynchronous
Advantage Actor-Critic, and the underlying framework of this
algorithm is based on the traditional actor-critic algorithm. Un-
like the well-known deep Q-learning algorithm [29] that is a
value-based RL, A3C algorithm is essentially a policy gradient
method. A3C directly outputs the explicit policy rather than
giving out the indirect value function as a suggestion, which
has proven to be faster, simpler, more robust and to perform
better if tuned well. On top of all that, it can work in scenarios
with both continuous and discrete action spaces. Therefore, it
is very promising in handling with very complex problems.

A. Policy Gradient Training

The actor-critic algorithm involves two neural networks:
the actor network with parameter θπ , and the critic network
with parameter θv . The learning agent interacts with the
environment and uses the observations to train these two
neural networks so as to obtain the optimal policy that can
maximize its reward. The role of the actor network is to define
a parameterized policy, which takes the system state as an
input, and generates the probabilities for each possible action
through the neural network with parameter θπ . Essentially, the
policy, denoted as π(a|x; θπ), is the conditional probabilities
of performing a certain action at a given state with a spe-
cific neural network parameter. The training is dedicated to
iteratively update the parameter θπ to make the output policy
optimal for the expected rewards.

The trajectory τ of a SMDP can be denoted by a sequence
x0,a0, r1,x1,a1, r2, . . . ,xT−1,aT−1, rT , where rt+1 repre-
sents the obtained reward when the system state transfers
from xt to xt+1 by taking action at. T indicates the terminal
step or time which is prescribed in advance. We consider
the discounted cumulative reward, denoted by Rτ = r1 +
γr2 + γ2r3 . . .+ γT−1rT , where γ is the discount factor and
0 ≤ γ ≤ 1. We aim at maximizing the expected discounted
cumulative reward E[Rτ |π; θπ], and thus finding how to shift
the probability distribution π(a|x; θπ) through its parameter
θπ becomes a key point to increase the reward.

The idea of the policy gradient method is to estimate
the gradient of the expected discounted cumulative reward
E[Rτ |π; θπ] with respect to parameter θπ by observing the
trajectories following that policy π. The gradient can be

derived as

∇θπE[Rτ |π; θπ] =∇θπ

∑
π(a|x; θπ)Rτ (x,a)

=
∑
∇θππ(a|x; θπ)Rτ (x,a)

=
∑

π(a|x; θπ)
∇θππ(a|x; θπ)
π(a|x; θπ)

Rτ (x,a)

=
∑

π(a|x; θπ)∇θπ log π(a|x; θπ)Rτ (x,a)

=E [Rτ (x,a)∇θπ log π(a|x; θπ)]

=
T−1∑
t=0

Rt(xt,at)∇θπ log π(at|xt; θπ),

(21)
where the first step is the definition of expectation; the second
step swaps the sum and the gradient; in the third step,
simultaneously multiply and divide by π(a|x; θπ); the fourth

step uses the proposition ∇θ log z =
1

z
∇θ(z); for the last

two steps, the derivation is also based on the definition of
expectation. The update of the parameter θπ for the actor
neural network can be expressed as

θπ ← θπ + απ

T−1∑
t=0

Rt(xt,at)∇θπ log π(at|xt; θπ), (22)

where απ is the learning rate for training the actor neural
network.

The role of the critic network is to estimate the state-value
function, denoted by Vπ(x; θv), which is the expected sum of
rewards when starting at the state x following the policy π,
and it can be expressed as

Vπ(x; θ) = E[Rτ |x0 = x;π]. (23)

The state-action value function, denoted by Qπ(x,a; θv),
represents the expected sum of rewards when starting in state
x, taking action a and from then on following the policy π.
Thus,

Qπ(x,a; θv) = E[Rτ |x0 = x;a0 = a;π]. (24)

The advantage function, denoted by Aπ(x,a; θ), is defined
as

Aπ(x,a; θv) = Qπ(x,a; θv)− Vπ(x; θv), (25)

which represents the difference of the expected sum of rewards
when we specifically choose the action a in the state x,
compared with the expected sum of rewards when we draw
the action from the policy π. The advantage funtion is used
instead of the expected discounted rewards E[Rτ |π; θπ] in the
computation of the gradient, and the update of parameter θπ
should be revised as

θπ ← θπ + α
T−1∑
t=0

Aπ(xt,at; θv)∇θπ log π(at|xt; θπ). (26)

The insight of this upgrade is to allow the learning agent to
decide not only how good its actions were but also how much
better the actions turn out to be than expected. In this paper, we

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

8

consider the more advanced estimate of the advantage function
as

Aπ(xt,at; θv) = rt + γVπ(xt+1; θv)− Vπ, (xt; θv), (27)

which can substantially reduce the variance of the policy
gradients [30], [31]. Please refer to [30] for more details.
Therefore, the critic network parameter θv can be trained as

θv ← θv−αv

T−1∑
t=0

(rt + γVπ(xt+1; θv)− Vπ(xt; θv))
2
, (28)

where αv is the learning rate for training the critic neural
network.

In order to encourage the learning agent to do more explo-
ration, the entropy of the policy H(π(at|xt; θπ)) is introduced.
H(π(at|xt; θπ)) works as the underlying meanings of entropy:
following the policy π, if the output actions are with relatively
similar probabilities, the entropy will be high; oppositely, if a
single action is preferred with a large probability, the entropy
will be low. The entropy term is added into the policy loss
function and the update of the parameter θπ for the actor
network is upgraded as

θπ ← θπ+απ

T−1∑
t=0

Aπ(xt,at; θv)∇θπ log π(at|xt; θπ)

+β∇θπH(π(at|xt; θπ)),

(29)

where the parameter β should be set to a large value at the
beginning of the training so as to encourage the exploration,
whereas it should decrease over time to focus on the exploiting
for the purpose of improving the rewards.

B. Asynchronous Training

Reinforcement learning is known to be unstable or even to
diverge when a non-linear approximator is used to represent
the value function [29], where one cause of this instability is
the correlation of the consecutive state updates. To get around
this issue, deep Q-learning used a biologically mechanism,
termed as experience replay. The learning agent’s large amount
of history experiences are stored into a replay memory, and
then a batch of the experiences are randomly sampled from
the buffer to train the deep neural network. By randomizing
over the experiences, the correlations in the observation states
can be removed.

For A3C algorithm, experience replay is no longer used, but
instead it gets many learning agents working simultaneously.
Each learning agent interacts with its own incarnation of the
environment and collects experience. Since the experiences of
each learning agent are independent, the overall experiences
available for training the neural networks are becoming more
diverse and uncorrelated.

For the implementation of the asynchronous training, each
of the learning agents should run on a separate processor
thread, so that the training works in parallel. There is a global
network that holds the shared parameters (θπ, θv), and it is
constantly and asynchronously being updated by each of the

TABLE I
PARAMETER VALUES IN SIMULATIONS

Parameter Value

Mini-batch sizes 50, 50

Experience replay buffer sizes 5000, 5000

Discount factor 0.9

Exploration probability 0.01

Total training steps 100,000

Processing rate [1, 7.5, 6.5]

Segment arrival rate [0.5, 1.5, 3.5]

Delay constraints [0.1, 7.9, 10]

Failure probabilities pwb [0.31, 0.33, 0.37]

Unit price for energy consumption ewc [0.2, 0.22, 0.2]

Consumed energy in unit time pwc [0.17, 0.2, 0.12]

learning agents. The asynchronous update means that each
learning agent updates the shared parameters once it terminates
one training episode. Then the global network holds the newly
updated parameters, and the next learning agents will use the
new parameters to start its own training. Since all the learning
agents work in parallel, a linear speedup is expected to be
proportional with the number of agents.

V. SIMULATION RESULTS AND DISCUSSIONS

In the simulation, we consider there are three data service
subscribers (DSS) requesting data processing services, and in
the edge computing layers, there are three edge computing
nodes (ECN) providing the computing services. The comput-
ing segments generated from each DSSs follow a Poisson
arrival process with different average arrival rate λi. The ECNs
have different computing rate, noted as µl. We assume the
IoT devices are randomly located within a range around the
ECNs, and the wireless channel states between the IoT devices
and the ECNs follow a Markov process as [22]. The detailed
parameters are listed in Table I.

In addition,we used a GPU-based server,which has 4 Nvidia
GPUs with version GTX TITAN. The CPU is Intel Xeno E5-
2683 v3 with 128G memory. Software environment we utilized
is Pytorch 1.3.1 with Python 3.7 on Windows 10.

In the proposed scheme, we consider the various delay
constraints from different DSSs, the time-varying channel
states, and the time-varying computing states of different
ECNs. For comparison, four baseline schemes are considered
in the simulation part.

1) Proposed scheme with strict delay constraints: The delay
constraints from all the DSSs are extremely strict.

2) Proposed scheme without delay constraints: All the DSSs
have no delay constraints.

3) Proposed scheme with static channels: The wireless
channel states are assumed to be static, which does not change
dynamically.

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

9

Fig. 3. Convergence performance with the proposed scheme.

4) Existing scheme with identical settings: For the experi-
ments under various task arrival rates, all the DSSs have the
same delay requirements; For the experiments under various
edge computing processing rates, all the ECNs have the same
processing rates.

A. Convergence Performance

Fig. 3 shows the convergence performance of the proposed
scheme. From Fig. 3, we can observe that the average reward
of the proposed scheme is very low at the beginning of
the learning process. With the increase of the number of
the episode, the average reward increases until it reaches
a relatively stable value, which is around 150, and in the
meantime, the loss function decreases nearly to zero. This
shows the convergence performance of the proposed scheme,
which converges at a reasonable speed around 1.5104 decision
episodes.

B. Performance Under Various Segment Arrival Rates

In this experiment, we attempt to demonstrate the aver-
age performance of edge computing resource allocation per
episode in terms of the average reward, the average total
delay, and the average task drop rate under different times
of the originally-set arrival rates λi. The simulation results
are illustrated in Fig. 4.

Fig. 4(a) exhibits the average reward performance of the
proposed scheme and the compared baseline schemes. From
the results, we can see that with the increase of segment
arrival rates, the rewards of all the schemes increase, but
gradually tend to be steady, which is due to the limited edge
computing processing rates. For the higer arrival rates, the
edge nodes cannot process all the computing requests, thus
just maintain a relatively stable value. In contrast, for the
proposed scheme with strict delay constraints, lots of segments
may be dropped off due to the delay limitations, which leads
to the lower reward. Particularly, we can also observe that

the gap between the reward of the proposed scheme and the
proposed scheme without delay constraints narrows down with
the increase of arrival rates. This is because for higher arrival
rates, both the schemes can process nearly identical numbers
of segments during a specific period of time (i.e., an episode).
Furthermore, compared with the existing scheme with identical
settings, where the delay constraints are the same from all the
DSSs, our proposed scheme performs much better. Due to
the limited computing resources, not every requirement can
be satisfied. Based on the segment arrival rates, the wireless
channel qualities between DSSs and edge nodes, and DSSs’
delay constraints to selectively allocate the optimal edge nodes
to serve users, which can optimze the total reward.

Fig. 4(b) shows the average total delay per episode, which
includes the transmission delay, the queuing dealy and the
computing delay. For the proposed scheme without delay con-
straints, the delay is the largest. This is because it is inclined to
prioritize the numbers of connections between DSSs and edge
nodes without the consideration of delay constraints, which
produces larger reward, but higher delay. Contrarily, for the
proposed scheme with strict delay constraints, a large amount
of requests will be dropped off with the increase of arrival
rates, which will lead to smaller delay, but lower reward. For
the proposed scheme with static channels, it ignores part of
the transmission delay, thus the total delay is relatively lower.

Fig. 4(c) demonstrates the average task drop rate per
episode. From this figure, we can see that with the increase of
segement arrival rate, the drop rate will dramatically increase
for the existing scheme with identical settings. This is because
when the segment arrival rate is small, random allocation is
executed, however, when a large amount of segments arrive,
random allocation cannot satisfy the DSS’s requirements,
which leads to higher task drop rate. Comparitively, our
proposed scheme can flexibly and effectively allocate the edge
computing nodes. With the increase of segment arrival rate,
the drop rate will also increase, but not dramatically, which
proves the stability of our proposed scheme. Moreover, for the
proposed scheme without delay constraints the average drop
rate is the lowest.

C. Performance Under Various Edge Processing Rates

We do this experiment to exhibit the average performance
of edge computing resource allocation per episode in terms of
the average reward, the average total delay, and the average
task drop rate under different times of the originally-set edge
computing processing rates µi. The simulation results are
shown in Fig. 5.

Fig. 5(a) shows the average reward performance of the
proposed scheme and other baseline schemes with different
processing speed/rates. From this figure, we can observe that
with the increase of edge processing speed, the rewards of
all the schemes increase, but finally tend to be steady due
to the fixed segment arrival rates. Particularly, at the lower
processing speed, the gap between the proposed scheme and
the proposed scheme without delay constraints is relatively

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

10

(a)

(b)

(c)

Fig. 4. Average edge computing resource allocation performance versus
segment arrival rates. (a) Average reward per episode. (b) Average delay per
episode. (c) Average task drop rate per episode.

larger. As the processing speed grows, the gap becomes
smaller, and evetually tends to converge. This is because,
with higher processing speed, more computing requests with
various delay constraints of the proposed scheme can be
accepted and satisfied, and more reward is obtained. If the
processing speed is large enough, the proposed scheme can
meet up all the requirements, thus it performs as well as the
proposed scheme without delay constraints.

Fig. 5(b) shows the average total delay per episode versus
the processing speed. From the figure, we can see that with
the increase of processing speed, the delay of all the schemes
increase dramatically until reaches to a peak, and then it
declines gradually. At the beginning, as the processing speed
increases, the edge nodes can process more segments, there-
fore the delay grows significantly. When the edge processing
speed equals to the segment arrival rate, the climax arises, after
which the processing speed surpasses the segment arrival rate,
so the delay declines. As for the proposed scheme without
delay constraints, the delay declines rapidly after passing
the climax, and it performs better than both the existing
scheme. This indicates that our proposed scheme can allocate
the most appropriate edge nodes to the upcoming segments
for computing,, and proves the effectiveness of the proposed
scheme.

Fig. 5(c) demonstrates the average task drop rate per episode
with different processing speed. It is shown that the average
drop rates of all the schemes decline with the increase of
processing speed because more and more segments can be
accepted and processed. For the proposed scheme without
delay constrants, the drop rate is the lowest.

D. Effect of Verification Failure Probability

Fig. 6 illustrates the average reward per episode with differ-
ent failure probabilities of the first ECN. Actually, originally
in the experiment, we set pwb = [0.1, 0.2, 0.3], w = 1, 2, 3
where each item denotes the failure probability of ECN fw
fails in accomplishing the computation task and cannot pass
through the verification in the blockchain system, and it will
get punished by slashing a certain percentage of its guarantee
deposit. Later on, in order to explore the effect of verification
failure probability on the performance, in each experiment,
we add 0.1 to each item of pwb . The results are shown in
Fig. 6. From this figure, we can see that as the failure
probabilites increase, the reward will decline significantly.
When the failure probability is over a certain value, the reward
becomes negative. This also indicates the effectiveness of
the blockchain system on the proposed resource allocation
scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we first studied the the security and privacy
issues of edge computing-enabled IoT, and then the char-
acteristics of blockchains that allow blockchains well-suited
for the IoT scenarios were presented. A general framework
for blockchain-based edge computing-enabled IoT scenarios

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

11

(a)

(b)

(c)

Fig. 5. Average edge computing resource allocation performance versus
edge processing rates. (a) Average reward per episode. (b) Average delay
per episode. (c) Average task drop rate per episode.

Fig. 6. Average reward with different verification failure probabilities.

was proposed. Within the proposed framework, the complete
procedure of a transaction was specified step by step. Fur-
thermore, a smart contract was designed within a private
blockchain network, which exploited the-state-of-the-art re-
inforcement learning, Asynchronous Advantage Actor-Critic
algorithm, to solve the edge computing resources allocation
problem. Specifically, different from the existing edge comput-
ing resource allocation schemes, this proposed scheme focused
on multiple service subscribers, and distinguished different
QoS requirements from subscribers, which leads to higher
efficiency. This exemplifies how AI can be combined with
blockchains. Finally, simulation results were presented to show
the effectiveness of the proposed edge computing resource
allocation scheme. In future work, we will further consider
joint optimization of the blockchain parameters and the edge
computing resource alloction.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho, “Urban planning and
building smart cities based on the internet of things using big data
analytics,” Computer Networks, vol. 101, pp. 63–80, 2016.

[3] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in iot: A blockchain-assisted collective q-
learning approach,” IEEE Internet of Things Journal, 2020.

[4] C. Qiu, F. R. Yu, H. Yao, C. Jiang, F. Xu, and C. Zhao, “Blockchain-
based software-defined industrial internet of things: A dueling deep
q-learning approach,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4627–4639, 2018.

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[6] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

12

[7] J. Du, L. Zhao, X. Chu, F. R. Yu, J. Feng, and I. Chih-Lin, “Enabling
low-latency applications in lte-a based mixed fog/cloud computing
systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2,
pp. 1757–1771, 2018.

[8] K. Yeow, A. Gani, R. W. Ahmad, J. J. Rodrigues, and K. Ko, “Decentral-
ized consensus for edge-centric internet of things: A review, taxonomy,
and research issues,” IEEE Access, vol. 6, pp. 1513–1524, 2018.

[9] S. Shen, Y. Han, X. Wang, and Y. Wang, “Computation offloading with
multiple agents in edge-computing–supported iot,” ACM Transactions
on Sensor Networks (TOSN), vol. 16, no. 1, pp. 1–27, 2019.

[10] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2,
pp. 869–904, 2020.

[11] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, 2020.

[12] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier iot fog networks: a joint optimization
approach combining stackelberg game and matching,” IEEE Internet of
Things Journal, 2017.

[13] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[14] X. Li, X. Wang, P.-J. Wan, Z. Han, and V. C. Leung, “Hierarchical edge
caching in device-to-device aided mobile networks: Modeling, optimiza-
tion, and design,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 8, pp. 1768–1785, 2018.

[15] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1508–1532, 2019.

[16] M. Liu, F. R. Yu, Y. Teng, V. C. Leung, and M. Song, “Computation
offloading and content caching in wireless blockchain networks with
mobile edge computing,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 11, pp. 11008–11021, 2018.

[17] J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A survey
of blockchain technology applied to smart cities: Research issues and
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3,
pp. 2794–2830, 2019.

[18] “Monax industries. dual integrations, 2016..” Available: https://monax.
io/explainers/dual integration/.

[19] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
2017.

[20] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and P. Barnaghi,
“A knowledge-based approach for real-time iot data stream annotation
and processing,” in Internet of Things (iThings), 2014 IEEE Inter-
national Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CP-
SCom), IEEE, pp. 215–222, IEEE, 2014.

[21] P. Doug and T. Eric, “Livepeer whitepaper: Protocol and eco-
nomic incentives for a decentralized live video streaming network.”
Available: https://github.com/livepeer/wiki/blob/master/WHITEPAPER.
md#livepeer-protocol, 2017.

[22] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55,
2017.

[23] L. Wei, J. Cai, C. H. Foh, and B. He, “Qos-aware resource allocation
for video transcoding in clouds,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 1, pp. 49–61, 2017.

[24] X. Guo and O. Hernández-Lerma, “Continuous-time controlled markov
chains with discounted rewards,” Acta Applicandae Mathematica,
vol. 79, no. 3, pp. 195–216, 2003.

[25] F. Yu and V. Krishnamurthy, “Optimal joint session admission control
in integrated wlan and cdma cellular networks with vertical handoff,”
IEEE Transactions on Mobile Computing, vol. 6, no. 1, 2007.

[26] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
pp. 1928–1937, 2016.

[27] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016.

[28] Y. Wu and Y. Tian, “Training agent for first-person shooter game with
actor-critic curriculum learning,” 2016.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[30] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[31] H. Mao, Neural adaptive video streaming with pensieve. PhD thesis,
Massachusetts Institute of Technology, 2017.

YING HE received the Ph.D. degree from both
Dalian University of Technology, China and Car-
leton University, Canada in 2019. She is currently
an assistant professor in the College of Computer
Science and Software Engineering, Shenzhen Uni-
versity. She has published over twenty research
papers since 2015. Her current research interests in-
clude reinforcement learning, intelligent transporta-
tion systems, wireless networks, and blockchain.

Yuhang Wang received the B.S. degree in computer
science and technology from the Hebei Agricultural
University, Hebei, China, in 2019. He is currently
pursuing the M.S. degree at Shenzhen University,
Guangdong, China. His current research interests
include machine learning, wireless networks, mobile
edge computing and caching.

Chao Qiu is currently a Lecturer in the School
of Computer Science and Technology, College of
Intelligence and Computing, Tianjin University. She
received the B.S. degree from China Agricultural
University in 2013 in Communication Engineering
and the Ph. D. from Beijing University of Posts
and Telecommunications in 2019 in Information and
Communication Engineering. From September 2017
to September 2018, she visited Carleton University,
Ottawa, ON, Canada, as a Visiting Scholar. Her
current research interests include machine learning,

software defined networking, and blockchain.

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3035437, IEEE Internet of
Things Journal

13

Qiuzhen Lin received the B.S. degree from Zhao-
qing University and the M.S. degree from Shenzhen
University, China, in 2007 and 2010, respectively.
He received the Ph.D. degree from Department of
Electronic Engineering, City University of Hong
Kong, Kowloon, Hong Kong, in 2014. He is cur-
rently an associate professor in College of Com-
puter Science and Software Engineering, Shenzhen
University. He has published over twenty research
papers since 2008. His current research interests
include artificial immune system, multi-objective

optimization, and dynamic system.

Jianqiang Li received his B.S and Ph.D. degree
from South China University of Technology in 2003
and 2008. He is a professor at the College of
Computer and Software Engineering of Shenzhen
University. He led three projects of the National
Natural Science Foundation, and three projects of the
Natural Science Foundation of Guangdong province,
China. His major research interests include robotic,
hybrid systems, internet of thing and embedded
systems.

Zhong Ming received the Ph.D. degree in Computer
Science and Technology from the Sun Yat-Sen Uni-
versity, Guangzhou, China, in 2003. He is currently a
professor with the National Engineering Laboratory
for Big Data System Computing Technology and the
College of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, China. His
research interests include software engineering and
web intelligence. Contact him at mingz@szu.edu.cn.

Authorized licensed use limited to: University of Gothenburg. Downloaded on December 20,2020 at 11:48:39 UTC from IEEE Xplore. Restrictions apply.

